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Abstract. We analyze the achievable precision for single-qubit gates that are based on off-resonant Raman
transitions between two near-degenerate ground states via a virtually excited state. In particular, we study
the errors due to non-perfect adiabaticity and due to spontaneous emission from the excited state. For
the case of non-adiabaticity, we calculate the error as a function of the dimensionless parameter χ = ∆τ ,
where ∆ is the detuning of the Raman beams and τ is the gate time. For the case of spontaneous emission,
we give an analytical argument that the gate errors are approximately equal to Λγ/∆, where Λ is the
rotation angle of the one-qubit gate and γ is the spontaneous decay rate, and we show numerically that
this estimate holds to good approximation.

PACS. 03.67.Lx Quantum computation – 73.21.La Quantum dots

QICS. 13.10.+n Effects of noise and imperfections – 15.10.Qd Quantum dots – 16.10.Es Electrons in
semiconductors: spin

1 Introduction

The ability to perform arbitrary unitary transformations
on individual qubits is very important in the context of
quantum computation [1]. From the point of view of de-
coherence, it is often advantageous to use near-degenerate
ground states of a given system as qubits, e.g. different hy-
perfine levels in a trapped ion or atom, or the spin states
of an individual excess electron in a quantum dot. In such
situations, the use of optical Raman transitions can be an
attractive approach for realizing single-qubit operations,
cf. reference [2] for experiments with trapped ions, refer-
ence [3] for a proposal involving atoms in an optical lat-
tice, and reference [4] for a proposal with spins in quantum
dots.

The use of Raman transitions is well-known also in
the context of stimulated Raman adiabatic passage (STI-
RAP), which is commonly used for the coherent transfer
of quantum states in atomic and molecular physics [5].
STIRAP has the advantages of eliminating the effects of
spontaneous emission from the excited state entirely (be-
cause the system is always in a dark state) and of be-
ing robust with respect to fluctuations in the laser pulse
area. However, for the classic STIRAP procedure the ini-
tial state of the system has to be known, whereas quantum
gates have to work for arbitrary initial states. A scheme
for single-qubit gates based on STIRAP has been pro-
posed [6], which makes use of additional low-lying states.
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Unfortunately such states are not always available in a
given physical system.

In particular, there are only two low-lying states in the
case of a qubit realized by the two spin states of a single
excess electron in a quantum dot, which is a very promis-
ing candidate system for the implementation of quantum
computing. It is thus of interest to develop procedures
for realizing arbitrary single-qubit operations via Raman
transitions in such systems. Such a procedure has recently
been proposed in reference [7]. The authors suggested to
perform the Raman operation in an adiabatic fashion, in
order to keep the population in the excited state as small
as possible. In contrast to the case of STIRAP, the sys-
tem does not remain in a dark state at all times, and
the pulse area has to be precisely determined. Variations
of the proposal involving different excited states of the
quantum dots (light- hole excitons instead of heavy-hole
excitons) were discussed in [8,9]. Let us note that there
are several proposals on how to realize optically controlled
two-qubit gates between individual spins in different quan-
tum dots [4,8–10]. Schemes for qubit measurement have
also been proposed [4,8,11].

Note that in the absence of spontaneous emission
single-qubit operations could also be performed exactly
in a non-adiabatic fashion via on-resonant Rabi rota-
tions [12]. In the presence of spontaneous emission, the
rotations have to be much faster than the spontaneous
lifetime, to keep the emission probability from the excited
state small. This typically requires very high laser inten-
sities. Moreover, in the case of quantum dots, the interac-
tion of the exciton with phonons also has to be taken into
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account [8,13]. This leads to large errors for fast opera-
tions, which however decrease very significantly for slower
operations. The basic reason for this is that the speed
of the operation determines the energy that is available
for the creation of phonons (since the coupling is such that
the system does not decay from the excited state during
the phonon emission). The slower the operation, the less
energy is available, restricting the available state space for
the phonons. There is no corresponding energy constraint
for spontaneous emission, since the energy for photon cre-
ation is provided by the decay of the emitter to one of the
low-lying states. The combination of the two error mech-
anisms — emission of phonons and of photons — thus
provides strong motivation for the use of the adiabatic
protocol of reference [7], which promises to allow slower
operations even in the presence of spontaneous emission.

In quantum computing, it is important to gain a de-
tailed understanding of the expected size of the imperfec-
tions for any given quantum gate protocol. In reference [7]
the authors briefly discussed the effects of non-perfect adi-
abaticity and of spontaneous emission from the excited
state. In the present work we perform a more detailed
study of these fundamental sources of error for the pro-
posed gate protocol. In particular, we obtain quantitative
results for the errors due to non-adiabaticity, and a sim-
ple formula for the errors due to spontaneous emission,
namely that they are approximately equal to Λγ/∆, where
Λ is the rotation angle for the single-qubit rotation, γ is
the spontaneous emission rate and ∆ is the detuning of
the two Raman lasers from the excited state. We give ev-
idence for this result both with a simple formal argument
and by numerical computation.

This paper is organized as follows. In Section 2 we
describe the protocol for realizing arbitrary single-qubit
gates via Raman transitions proposed in reference [7]. In
Section 3 we study the errors due to non-perfect adiabatic-
ity (in the absence of spontaneous emission). In Section 4
we study the errors caused by spontaneous emission. In
Section 5 we give our conclusions.

2 Gate protocol

In this section we describe the gate protocol proposed in
reference [7]. Consider a three level system composed of
the two logical states of the qubit, |0〉 and |1〉, and an aux-
iliary excited state |X〉. The protocol relies on adiabatic
Raman transitions in this Λ system, cf. Figure 1, using
two phase-locked laser pulses. The two laser frequencies
are chosen such that they have the same detuning ∆, i.e.
they satisfy the Raman resonance condition.

The Hamiltonian in the interaction picture is:

H =

⎛
⎝

0 0 Ω1(t)eiα
0 0 Ω2(t)

Ω1(t)e−iα Ω2(t) ∆

⎞
⎠ , (1)

where α is the relative phase between the two real Rabi
frequencies Ω1(t), Ω2(t). This Hamiltonian can be diag-
onalized straightforwardly. One introduces the following

Fig. 1. Scheme for single qubit gates analyzed in this paper.
The low lying states |0〉 and |1〉 serve as qubit states. They are
coupled to an excited state |X〉 via two laser beams with time-
dependent Rabi frequencies Ω1 and Ω2e

iα. The laser beams
have the same constant detuning ∆ from the excited state.

parameters:

Ω(t) =
√
Ω2

1(t) +Ω2
2(t) (2)

Z(t) =

√
Ω2(t) +

(
∆

2

)2

(3)

φ(t) =
1
2

arctan
(

2
Ω(t)
∆

)
(4)

β(t) = arctan
(
Ω2(t)
Ω1(t)

)
. (5)

The angle β is maintained constant by choosing the same
envelope shape for the two pulses. One obtains the eigen-
values:

• λ1(t) = 0 with eigenvector

|Φ1(t)〉 =

⎛
⎝

−eiα sin(β)
cos(β)

0

⎞
⎠ (6)

• λ2(t) = −2Z(t) sin2(φ(t)) with eigenvector

|Φ2(t)〉 =

⎛
⎝

−eiα cos(β) cos(φ)
− sin(β) cos(φ)

sin(φ)

⎞
⎠ (7)

• λ3(t) = 2Z(t) cos2(φ(t)) with eigenvector

|Φ3(t)〉 =

⎛
⎝
eiα cos(β) sin(φ)

sin(β) sin(φ)
cos(φ)

⎞
⎠ . (8)

The first eigenstate |Φ1(t)〉 is time independent and com-
pletely decoupled from the other two eigenstates. It has
no contribution from the excited state |X〉. The second
eigenstate |Φ2(t)〉 possesses only a small component of the
excited state |X〉, as long as Ω/∆ is small. The last state
|Φ3(t)〉 is mainly composed of the excited state |X〉.

An arbitrary unitary transformation can be realized
adiabatically in the following way. Before the lasers are
turned on (i.e. for φ = 0), the initial qubit state can be
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expressed as a linear combination of the first two eigen-
states. By applying the two lasers, the Hamiltonian is then
changed continuously. The adiabatic theorem states that,
if the change of the Hamiltonian is sufficiently slow, the
population in each instantaneous eigenstate remains con-
stant, only the relative phases of the eigenstates change.
In the subspace formed by the first two eigenstates, one
obtains the following transformation:

[a, b] �−→ [
a, be−iΛ2

]
(9)

with

Λ2 =
∫ tf

ti

λ2(u)du, (10)

where ti and tf denote the initial and final times respec-
tively. From the point of view of the qubit basis spanned
by the states |0〉 and |1〉, the resulting transformation has
the form

U = e−i/2Λ2�σ·�n, (11)

where 
σ is the vector of Pauli matrices, corresponding to
a rotation through an angle Λ2 about an axis described
by a unit vector 
n with components

nx = cos(α) sin(2β)
ny = − sin(α) sin(2β)
nz = cos(2β). (12)

We can now begin our detailed study of the corrections
to this idealized description under realistic experimental
conditions. We will start with errors due to non-perfect
adiabaticity.

3 Errors due to non-adiabaticity

3.1 Exact equations of motion

The exact wave function can be expanded in terms of the
previously defined instantaneous eigenstates, but with in
general time-dependent coefficients:

ψ(t) =
∑
n

an(t) |Φn(t)〉 exp
[
−i
∫ t

ti

λn(u)du
]
. (13)

Writing out the Schrödinger equation for this wave func-
tion, one obtains the following evolution equations for the
coefficients:

ȧk exp
[
−i
∫ t

ti

λk(u)du
]

=

−
∑
n

an(t)〈Φk(t)‖Φ̇n(t)〉 exp
[
−i
∫ t

ti

λn(u)du
]
. (14)

Substituting the values of the scalar products
〈Φi(t)‖Φ̇j(t)〉 according to the definition of the eigenstates,
one finally has:

ȧ1(t) = 0

ȧ2(t) = −φ̇(t)a3(t)P23(t)

ȧ3(t) = φ̇(t)a2(t)P32(t) (15)

with

P32(t) = P ∗
23(t) = exp

(
i

∫ t

ti

(λ3(v) − λ2(v)) dv
)

= exp
(

2i
∫ t

ti

Z(v)dv
)
. (16)

The resolution of this system of differential equations al-
lows to determine the error due to non-adiabaticity.

For a given desired transformation U , we will define
the error as the maximum departure (in terms of over-
lap) of the real final state ρ(tf ) from the ideal final state
|ψideal〉 = U |ψ(ti)〉, where the maximization is over all
initial states:

E(U) = max
ψ(ti)

[1 − 〈ψideal| ρ(tf ) |ψideal〉] . (17)

The error can be expressed in terms of the complex coeffi-
cients ai(tf ). Since the coefficient a1 always remains con-
stant, a3(ti) = 0 and the differential equations are linear
and homogeneous, it is in fact sufficient to solve the sys-
tem of equations for one initial value of a2, say a2(ti) = 1.
The results for all possible initial states can then simply
be obtained by multiplying the solution with the corre-
sponding value of a2(ti).

3.2 Calculation of the error due to non-adiabaticity

We now proceed to calculate the error due to non-perfect
adiabaticity. To simplify the discussion, we will only con-
sider laser pulse shapes Ω(t) that are approximate Gaus-
sians of halfwidth τ centered at t = 0, slightly modified
such that the Rabi frequency is exactly zero at the initial
and final times (ti and tf ). We introduce the ratio

x(t) =
Ω(t)
∆

= xmaxf(t), (18)

where xmax is the maximal value of the ratio Ω/∆, i.e. we
have normalized f such that f(0) = 1. It should be pointed
out that the considered gate protocol is advantageous only
in the regime of relatively small x(t). Using the protocol
makes sense only when the excited state component in
the adiabatic basis state |Φ2(t)〉 is small. According to
equations (7) and (4), the squared excited state amplitude
in |Φ2(t)〉 is given by

sin2 φ(t) =
1
2

(
1 − 1√

1 + 4x2(t)

)
. (19)

For large values of x, the excited state components in the
states |Φ2〉 and |Φ3〉 are approximately equal, and there is
no reason to use the adiabatic gate protocol.

To show the role of the gate time more clearly, it is
convenient to make the following substitutions. For each
function g of the time t, we write g̃(u) = g(τu), with
the correspondence t = τu. Thus the new system evolves
between the unitless time ui = ti/τ and uf = tf/τ .
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Fig. 2. Determination of xmax, the maximum value of the ra-
tio Ω/∆, as a function of the dimensionless parameter χ = ∆τ
for a π rotation. The values for other rotation angles can be ob-
tained from the fact that xmax depends only on the ratio χ/Λ.

Introducing the dimensionless quantity

χ = ∆τ, (20)

i.e. the product of the detuning and the gate time, we
obtain the functions

P̃32(u) = exp
(
−iχ

∫ u

ui

√
1 + 4x2

maxf̃
2(v)dv

)
(21)

and
˙̃
φ(u) =

xmax
˙̃
f(u)

1 + 4x2
maxf̃

2(u)
, (22)

which appear in the dimensionless evolution equations:

˙̃a2(u) = ˙̃φ(u)ã3(u)P̃ ∗
32(u) (23)

˙̃a3(u) = − ˙̃
φ(u)ã2(u)P̃32(u). (24)

We thus obtain a new system of differential equations de-
pending on the two dimensionless parameters χ et xmax.
In the following, we will study the gate error as a function
of the rotation angle Λ and the dimensionless parameter
χ. The quantity xmax is then not an independent variable,
but is determined by these two parameters in the following
way. After simplifications and substitutions, equation (10)
becomes:

2Λ = χ

∫ uf

ui

(√
1 + 4x2

maxf̃
2(u) − 1

)
du = χg(xmax).

(25)
Recall that f̃(u) is essentially a Gaussian with halfwidth 1
(apart from a small modification at the boundaries of the
time interval), normalized such that its maximum value
is equal to one. This equation gives xmax as an implicit
function of the ratio Λ/χ. As g is an increasing function,
and is a bijection from [0,+∞] to [0,+∞], we obtain a one
to one correspondence between xmax and χ for a given Λ.
Figure 2 shows that xmax is a decreasing function of χ.
In the regime of small xmax, equation (25) can be simpli-
fied to

Λ = χx2
max

∫ uf

ui

f̃2(u)du, (26)
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Fig. 3. Gate error as a function of χ for different rotation
angles.

showing that xmax has to be of order
√
Λ/χ (since the

integral is of order one). This explains the fact, clearly
visible in Figure 2, that the regime of small xmax corre-
sponds to the regime of large χ.

For a given rotation angle Λ, we finally obtain a system
depending only on the parameter χ. By solving it numer-
ically, we obtain an estimation of the adiabatic error as
a function of χ and of Λ. Note that the error does not
depend on the axis of rotation. Indeed, the choice of the
axis of rotation only determines the relation of the basis
of logical states to the basis of adiabatic eigenstates, and
since the error is obtained by maximizing over all initial
states, this choice has no effect on its value. The error
as a function of χ for different values of the angle Λ is
shown in Figure 3. For each value of Λ, we observe two
characteristic regimes. The first one, where χ is small, is
characterized by a damped oscillatory behaviour as a func-
tion of χ, leading also to a non-monotonous variation of
the error with the rotation angle. In the second one, the
error decreases continuously with χ, and greater values of
Λ lead to larger errors.

The requirement of large χ can be understood qualita-
tively by considering equation (16). The coefficient a3 will
remain small as long as the phase factor P32(t) changes
sign much faster than a3 grows due to the factor φ̇(t) (re-
member that a2 can be taken to be equal to one at the be-
ginning), i.e. as long as φ̇(t) � Z(t), cf. reference [7]. In the
regime of small Ω/∆ this can be rewritten as Ω̇/∆ � ∆.
Approximating Ω̇ by Ω/τ one finds ∆τ � Ω/∆. The ex-
act results of Figure 3 show that a more accurate condition
is χ = ∆τ � 1, which is however not very different from
the above estimate in the intermediate regime where Ω/∆
is smaller, but not much smaller than 1.

We briefly comment on the results for small χ, or
equivalently large xmax, recalling that the considered pro-
tocol is not adapted to this regime. For large xmax, the
phase φ approaches its maximum value of π/4 very quickly
once the laser is turned on (and then stays approximately
constant). As a consequence, one can convince oneself
that a system starting out in one of the two low-lying
states acquires a large component in the state |Φ3〉 al-
most immediately [12]. This leads to large errors in the
framework of the present protocol, which assumes that
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the population in |Φ3〉 remains very small. As mentioned
above, precise gate operations in the on-resonant regime
are possible in principle, in particular in the absence of
other sources of error such as spontaneous emission of pho-
tons and phonons.

Our approach in this section has been partly numeri-
cal. Let us note that analytical techniques for calculating
corrections to the adiabatic approximation have been de-
veloped and applied to problems such as STIRAP [14].

4 Errors due to spontaneous emission

4.1 Estimate of error based on population transfer

In this section we will investigate the error introduced to
the Raman single-qubit gates by the finite lifetime of the
excited state |X〉 due to spontaneous emission. We will
begin with a fairly simple argument that gives the correct
behaviour for the error, before presenting more precise
numerical calculations in the next subsection.

As described before, the two adiabatic basis states that
are significantly populated during the gate operation are
|Φ1(t)〉 and |Φ2(t)〉. The state |Φ1(t)〉 has no contribution
from the excited state and is thus unaffected by sponta-
neous emission. On the other hand, the state |Φ2(t)〉 has
a component in the excited state |X〉. From equation (7),
we can see that the population in the unstable state |X〉
is therefore a2

2(t) sin2(φ(t)). Defining γ as the spontaneous
decay rate of the state |X〉, we can then estimate the pop-
ulation δ transferred by spontaneous emission during the
gate operation as follows:

δ =
∫ tf

ti

γa2
2(t) sin2(φ(t))dt. (27)

Let us assume that we are in the regime of small xmax,
and that the overall error due to spontaneous emission
is small, which implies that a2 is nearly constant. Both
assumptions will be well justified in any realization of the
gate protocol that is relevant to quantum computation.
Equation (27) can then be simplified to

δ = γτa2
2x

2
max

∫ uf

ui

f̃2(u)du, (28)

where we have again introduced the dimensionless func-
tion f̃(u) defined above. Comparing with equation (26),
which is valid in the regime of small xmax, and choosing
a2
2 = 1 in order to obtain an upper bound, we find the

following expression for the total transferred population
due to spontaneous emission:

δ = Λ
γ

∆
. (29)

The error induced by spontaneous emission is twofold; on
the one hand, a new distribution of the populations

∣∣a2
i

∣∣,
and on the other hand, a dephasing between the two qubit
basis states. The transferred population δ provides an es-
timate for the gate error due to spontaneous emission. It

may seem surprising that δ does not depend on the gate
time τ , even though for longer gate times the component
of the system in the excited state has more time to decay.
The reason for this is that for the same rotation angle
shorter gate times require larger populations in the ex-
cited state, and the two effects cancel out exactly, at least
within the framework of the above estimate. We are now
going to use numerical computation to obtain more pre-
cise results on the gate errors. Let us note that the effect
of spontaneous decay on STIRAP was studied e.g. in ref-
erence [15].

4.2 Master equation

In order to study the effects of spontaneous emission on
the Raman gate protocol in detail, we use the master equa-
tion formalism. In the present section, we assume for sim-
plicity that the spontaneous emission can only occur from
the state |X〉 toward the two qubit states |0〉 and |1〉, and
not to any additional states. To take this decay into ac-
count, we introduce the Lindblad operators:

Li =
√
γiσi (30)

with σi = |i〉 〈X | (for i = 0, 1). The constants γi are the
decay rates from |X〉 towards the states |i〉. The total
decay rate is thus given by γ = γ1 + γ2.

The master equation [1] is:

dρ

dt
= −i [H, ρ] +

∑
i

(
2LiρL+

i − {L+
i Li, ρ

})
. (31)

For quantum gate operations, the initial state |ψ〉 is always
a linear combination of the two logical states a |0〉 + b |1〉
with |a|2 + |b|2 = 1.

The master equation corresponds to a set of coupled
differential equations for the elements of the density ma-
trix that can be solved numerically. This allows us to de-
termine the gate error defined in equation (17).

4.3 Example — populations and purity

In this subsection, we describe the numerical results for
a particular case in detail, comparing the situations with
and without spontaneous emission. This is intended to
serve as an introduction and illustration for our more gen-
eral results presented in the next subsection.

We consider a rotation by π along the x-axis, corre-
sponding to α = 0 and β = π/4. The initial state of the
system is the state |0〉. The ideal final state is the state |1〉.
We choose the values τ = 0.01 ns,∆ = 1 meV ≈ 1500 ns−1

and γ1 = γ2 = 20 ns−1. While these values could apply to
conceivable experiments with quantum dots [16], we have
also chosen them such that the relevant effects are clearly
visible. For these values χ = 15. The adiabatic approxi-
mation is thus very well satisfied, cf. Figure 3.

Figure 4a shows the time evolution of the popula-
tions in the states |0〉, |1〉 and |X〉 without spontaneous
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Fig. 4. Evolution of the populations during a π rotation of
the state |0〉 around the x-axis into the state |1〉: (a) without
spontaneous emission; (b) with spontaneous emission.

emission. As expected, the populations in the states |0〉
and |1〉 are exchanged. Moreover, the population in |X〉
is zero at the end of the operation. One can describe the
evolution of the system in detail as follows. The initial
state |0〉 can be expressed in the adiabatic basis as:

|0〉 = − 1√
2

(|Φ1(ti)〉 + |Φ2(ti)〉) . (32)

The final state |1〉 can be written:

|1〉 =
1√
2

(|Φ1(tf )〉 − |Φ2(tf )〉) (33)

with |Φ1(tf )〉 = |Φ1(ti)〉 and |Φ2(tf )〉 = |Φ2(ti)〉.
The transformation is adiabatic: expressed in the basis
(|Φ1(t)〉,|Φ2(t)〉), the state of the system is:

|Φ(t)〉 = − 1√
2
[1, eiΛ(t)]. (34)

While the lasers are on, the phase Λ(t) grows and thus
the state |0〉 is continuously transformed into the state |1〉.
The state |Φ2(t)〉 has a component of order xmaxf(t) in
the state |X〉, the population in the excited state therefore
grows until the maximum of the light intensity is reached,
and then returns to zero. Figure 4b shows the same popu-
lations in the presence of spontaneous emission. It appears
clearly that the rotation is no longer perfect in this case.
The populations in the initial state |0〉 and in the excited
state |X〉 are no longer zero at the moment when the light
is turned off. Of course the remaining population in |X〉
will decay towards the states |0〉 and |1〉 on the larger
timescale set by γ1,2.

The departure from the perfect rotation can be further
visualized by analyzing the purity of the system density

�0.02 0 0.02 0.04
t �ns�

0.94

0.95

0.96

0.97

0.98

0.99

�

Fig. 5. Evolution of the purity of the state, Θ(t), without and
with spontaneous emission.

�0.02 0 0.02 0.04
t �ns�
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0.0010

0.0015

Population

Fig. 6. Time evolution of the population in the adiabatic basis
state |Φ3(t)〉 (whose dominant component is in the excited state
|X〉) without and with spontaneous emission.

matrix ρ(t), i.e. by studying the quantity Θ(t) = Trρ(t)2.
Figure 5 shows the evolution of Θ with and without spon-
taneous emission. As expected, Θ remains constant in the
absence of spontaneous emission. In the presence of spon-
taneous emission, the purity decreases considerably. This
decrease is particularly strong around t = 0, i.e. around
the maximum of the laser intensity. It is at this point that
the population in the state |X〉 becomes the largest. The
spontaneous emission from |X〉 causes the state to become
mixed.

Figure 6 shows the time evolution of the population
in the state |Φ3(t)〉 of equation (8). One sees that in the
absence of spontaneous emission the adiabatic approxima-
tion is well justified, the population in the state remains
very small. Its departure from zero corresponds to the
error due to non-perfect adiabaticity discussed in the pre-
vious section. On the other hand, the presence of spon-
taneous emission causes transitions between the states
|Φ2(t)〉 and |Φ3(t)〉, which populate the latter. This popu-
lation decreases on the timescale of the radiative lifetime,
since |Φ3(t)〉 contains predominantly the excited state |X〉.

4.4 General results on errors due to spontaneous
emission

In this subsection we will present more general results on
the error due to spontaneous emission. In particular we
want to test the estimate made in Section 4.1. Figure 7
shows the error for a rotation by π as a function of the
gate time τ in the presence of a spontaneous emission.
This graph should be compared to Figure 3, which shows
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Fig. 7. Gate error in the presence of spontaneous emission as
a function of the gate time τ . The spontaneous decay rates are
γ1 = γ2 = 5 ns−1, the detuning ∆ = 1 meV. The variation
of τ between 0 and 20 ps corresponds to the dimensionless
parameter χ = ∆τ varying from 0 to 30.
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Fig. 8. Gate error for a π rotation as a function of the
spontaneous decay rate γ for fixed values of the detuning
∆ = 1, 2, 4, 8 meV respectively (from top to bottom graph).

the same quantity in the absence of spontaneous emission.
For short times the behaviour is very similar, showing the
same damped oscillatory character. In this regime, the er-
ror is dominated by non-perfect adiabaticity. For longer
gate times, there is a clear difference. In the presence of
spontaneous emission, the error does not fall below a cer-
tain minimal value and is virtually independent of τ . This
is in good correspondence with the prediction made in
Section 4.1.

In order to test the above estimate more systemati-
cally, we have performed calculations varying γ and ∆
for a fixed value of the gate time τ = 13.3 ps. We re-
strict ourselves to values of ∆ ≥ 1 meV, corresponding
to χ ≥ 20, in order to make sure that the error due to
non-adiabaticity is negligible, cf. Figure 3. Furthermore
we focus on the regime where the overall gate error is at
most at the percent level, since this is the relevant regime
for quantum computing. The total spontaneous decay rate
is γ = γ1+γ2. For simplicity we have again chosen γ1 = γ2.

Figure 8 shows the behaviour of the gate error of a π
rotation as a function of the spontaneous decay rate γ for
four different values of the detuning ∆. One sees that the
error is linear in γ with a high degree of accuracy. Sim-
ilarly, Figure 9 shows the gate error as a function of ∆
for three different values of γ. One sees that the results
are fitted extremely well by a 1/∆ behaviour. The propor-
tionality of the error to γ/∆ is thus seen to be very well

1 2 3 4 5 6
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Fig. 9. Gate error of a π rotation as a function of detuning ∆
for fixed values of the spontaneous decay rate γ = 2, 4, 6 ns−1

respectively (from bottom to top graph). The curves are fits to
a 1/∆ behaviour.
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Fig. 10. Ratio of the (numerically obtained) exact value of
the error for a π rotation to the value of πγ/∆ given by the
estimate of Section 4.1 for a range of values of γ and ∆.

obeyed. To assess the accuracy of the above estimate con-
cerning the absolute size of the error, Figure 10 compares
the errors obtained numerically for a π rotation to the es-
timated error of πγ/∆. One sees that the approximation
works very well in the considered regime. As expected, it
tends to work somewhat less well for increasing values of
γ and decreasing values of ∆, i.e. increasing overall size of
the error, cf. Section 4.1.

5 Conclusions

The results obtained in the present paper give quantita-
tive information for the implementation of quantum gates
using the protocol of reference [7]. The results of Section 3
on the errors due to non-perfect adiabaticity give the nec-
essary conditions on gate speed, detuning and laser in-
tensity for any desired level of error. The results of Sec-
tion 4 quantify the errors due to spontaneous emission,
whose presence is unavoidable for the studied gate proto-
col. In the context of quantum computing with spins in
quantum dots, the present analysis complements the re-
sults of references [8,13] on quantum gate errors due to
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phonon-induced dephasing. As discussed in the introduc-
tion, phonon-related errors can be made small by slowing
down the gate operation. Our analysis shows that it is pos-
sible to choose relatively long gate times even in the pres-
ence of spontaneous emission, without significantly chang-
ing the size of the error due to the decay. Of course, the
gate time always has to be much shorter than the deco-
herence time of superpositions of the qubit states.

We are grateful to J. Eymery, J.-M. Gérard, Y.-M. Niquet and
J.-P. Poizat for useful discussions.
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